Thursday 23 April 2020

What is your largest inverter size?


Example:

Busbar = 200A
Main = 200A

What is your largest inverter size?

                                 200A X 1.2 = 240A
                                 240A – 200A = 40A
                                  40A / 1.25 = 32A

Largest inverter is 32A
You can multiply by the ac voltage to get the power!
705.12(D)(2)(3)(C): SOLAR + LOAD BREAKER METHOD

Load and supply breakers do not exceed the main breaker (this also works for subpanels).

New in the 2014 NEC, 705.12(D)(2)(3)(c) allows us to add up the load and supply breakers and as long as they don’t exceed the rating of the main supply breaker (or the busbar rating) then we are good.

                                  Solar + Load Main

Note that for the solar + load breaker accounting method, we do not use
125% of the inverter current, we use the size of the breaker. This is easy and convenient when combining inverters with an ac combiner subpanel.

Ten-foot inverter tap rule


240.21(B)(1), the ten-foot tap rule (for taps of ten feet or less):

• Tap ampacity > tap load
• Ampacity of tap conductor has to be greater than the load.
Pa
Example:

• ten-foot tap rule
• 200A source breaker
• 16A inverter.

The tap conductor must be at least 10% of (source breaker + 125% inverter
current):
                                             16A inverter 3 1.25 = 20A
                                       20A + 200A source breaker = 220A
                                                   0.1 x 220A = 22A
Tap conductor must be at least 22A
Additionally, the inverter breaker must be less than 22A and for a 16A inverter;
we would use a 20A breaker (16A 3 1.25 = 20A breaker).
One more thing to check is the 230A feeder, which needs to be enough to carry
currents from the source and 125% of the inverter.

DC DISCONNECT LABEL CALCULATION


1. Operating current:
               A. Imp X number of source circuits.

2. Operating voltage:
               A. Vmp X number of modules in series per source circuit.

3. Max system voltage:
               A.Voc X Max number of modules in series per 
                source circuit X Correction Factor of Ambient temp.

4. Short circuit current:
               A. Isc X 1.25 X number of source circuits 



MARKING OF MODULES


  •   Open-circuit voltage                                       Voc
  •   Operating voltage                                           Vmp
  •   Maximum permissible system voltage           Maximum system voltage
  •   Operating current                                            Imp
  •   Short-circuit current                                        Isc
  •   Maximum power                                             Power of module (Vmp 3Imp)
  •   Polarity                                                            + or –
  •   Max series fuse rating                                     Max fuse size

How to find out Voltage drop ?

Voltage drop example question

You have a PV array in a field and an inverter at a house 250 feet away. You are
using 10AWG stranded copper wire. There is just one string and the voltage of
the string operates at Vmp of 200V and an Imp of 5A. What is the percentage
power loss due to dc voltage drop?


Answer
Voltage drop is calculated with Ohm’s Law, which states:
                                  Vdrop = I X R
We know that current is I = 5A
We will solve for resistance by multiplying:
ohm / kFT X kFT = ohm


The distance from the PV to the inverter is 250 feet, so there will be two wires
to complete the circuit, therefore the wire length is:

                        250 feet X 2 directions = 500 feet
                      500 feet / 1000 feet per kFT = 0.5kFT
                                  Distance = 0.5kFT

From looking up the properties of 10AWG stranded copper wire, we get
1.24 ohms/kFT, so:

                              ohm / kFT X kFT = ohm
                      1.24 ohms / kFT X 0.5 kFT = 0.62 ohm
                               Resistance = 0.62 ohm

Now back to Ohm’s Law:

                                     Vdrop = I X R
                             Vdrop = 5A X 0.62 ohm
                                 Vdrop = 3.1 volts

We now know that during peak sun conditions, we are losing 3.1 volts on the
wire and if we measured the voltage at the array, it would be 3.1 volts higher
than at the inverter.

To figure out our losses as a percentage we will divide voltage drop by system
voltage and then turn that into a percentage.

          (Vdrop / system voltage) X 100% = voltage drop percentage
                       (3.1V / 200V) X 100% = 1.55% voltage drop

Since voltage multiplied by current is power, then voltage drop percentage is the
same as power loss, so we are losing 1.55% of our power in this case.

           Answer to voltage drop question: 1.55% power loss at STC

                                          table use for ohm/KFT on wire.


Article Raceway or cable covered



320 Armored Cable: AC
330 Metal-Clad Cable: MC
334 Non-metallic-Sheathed Cable: NM, NMC and NMS (romex)
338 Service Entrance Cable: SE and USE (USE-2)
340 Underground Feeder and Branch-Circuit Cable: UF
342 Intermediate Metal Conduit: IMC
344 Rigid Metal Conduit: RMC
348 Flexible Metal Conduit: FMC
350 Liquidtight Flexible Metal Conduit: LFMC
352 Rigid Polyvinyl Chloride Conduit: PVC
356 Liquidtight Flexible Nonmetallic Conduit: LFNC
358 Electrical Metallic Tubing: EMT

NEC PV ARTICLES & SECTION


690 PV systems705 Interconnections


110.14(C) Terminal temperatures
110.21(B) Hazard marking
110.26(A)(1) Working spaces
110.28 Enclosure selection

200.6 6AWG and smaller can be marked white for PV
230 Services
240 OCPD
240.4(D) Small conductor rule
250 Grounding and bonding
250.52 Electrodes
250.66 AC GEC
250.166 DC GEC
250.122 ECG (ac and dc)

300.5 Underground installations (how deep to bury conduit)
300.7 Raceways exposed to different temperatures
310 Wire sizing
310.15(B)(2)(a) Ambient temperature correction factors
310.15(B)(3)(a) Adjustment for >3 current carrying conductors in conduit
310.15(B)(3)(c) Temperature adjustment in conduit in sun on roof
310.16 Conductor ampacity in raceway cable or buried
310.17 Conductor ampacity in free air
314 Junction boxes, enclosures, outlets
320–362 Raceways (conduit) and cables
330 Metal-Clad: MC cable
334 Non-metallic sheathed cable: NM, NMC and NMS
338 Service entrance cable: SE, USE (USE-2)
342 Intermediate metal conduit: IMC
344 Rigid metal conduit: RMC
352 Rigid PVC
356 Liquid tight flexible non-metallic conduit: LFNC
358 Electrical metallic tubing: EMT

480 Batteries (also in 690.71–690.74)

690.2 Definitions
690.5 Ground-fault protection
690.7 Maximum voltage
690.8 Currents and circuit sizing
690.9 Overcurrent protection
690.10 Stand-alone systems
690.11 Arc-fault protection (dc)
690.12 Rapid shutdown
690.13–.18 Part III Disconnecting means
690.31–.35 Part IV Wiring methods
690.41–.50 Part V Grounding
690.51–.56 Part VI Marking
690.71–.74 Part VIII Batteries

705.10 Directory
705.12 Point of connection
705.12(A) Supply-sideMemorize and familiarize
705.12(D) Load side
705.12(D)(2)(1) Feeders
705.12(D)(2)(2) Feeder taps
705.12(D)(2)(3) Busbars
705.12(D)(2)(3)(a) 100% rule
705.12(D)(2)(3)(b) 120% rule
705.12(D)(2)(3)(c) Sum rule (loads + breakers  busbar)
705.31 Location of supply-side connection disconnect < 10 ft
705.32 Connect to supply-side of ground-fault protection

About us

What is your largest inverter size?